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1 MOTIVATION

Evolution Strategies (ES) and Genetic Algorithms
(GA) are two main members of Evolutionary Algo-
rithms (EA), which have become widely used to solve
optimization problems of real world applications. We
used especially ES of our Evolutionary Algorithms
Toolkit (EvA) [WZ97] for the following real world
problems: (a) to forecast the minimum energy 3D
structure of proteins, (b) motor optimization, (c) to
position clamps for workpiece adjustment in wood-
working industries [KMSZ99]. In this paper we deal
mainly with the latter. This application is multi-
objective, n-dimensional and must satisfy given con-
straints.

The problem is to find the best parameters for the ES
and its optimizing application (here: optimal clamp
positioning). It is very difficult to determine an exact
mathematical function for the problem, because the
evaluation of a found clamp configuration is only pos-
sible with the knowledge of experts. Therefore we want
to know if our constructed fitness function models the
real world good enough.

For this task we used a two-tier Meta-ES in a mas-
ter/slave relationship: the secondary ES as master,
which runs primary ESs as slaves. Running sequen-
tially, the performance is unacceptable (> 10 hours).
So we used parallel processing.

2 APPLICATION: OPTIMAL
CLAMP POSITIONING

Figure 1 shows a result of this geometric optimization
problem known in wood-working industries. The spe-
cial task is to find an optimal positioning of vacuum
clamps to fix a flat wood piece. These wood boards are
fixed on a working table by vacuum clamps in order
to treat them with a robot (shaping, sawing, snorring,
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Figure 1: Result of an Evolution Strategy: the fig-
ure shows the work table with a raw woodpiece (solid
rectangle), robot operation traces (thin polygons) and
eight clamps (filled rectangles), which have to fix the
wooden plate.

boring, glueing ...). The goal is the optimal position-
ing of these clamps to avoid interference with robots or
other clamps and to avoid fluttering in the work pro-
cess. Objectives like clamps should be near working
traces or clamps should be equally distributed are rat-
ing solutions found by a fitness function, which has to
be optimized. This task requires processing in limited
response time because it is embedded in a manufac-
turing workflow.

It is difficult to find a mathematical fitness function
which meets all these objectives and constraints. In
order to be more flexible, we parameterize this fitness
function by weighting factors for the clamp distribu-
tion, closeness to the trace, different kinds of clamps,
number of clamps etc. In addition there are the pa-
rameters of the ES like population sizes.

A further task is to find optimal parameters for special
input classes. Most customers of our industrial part-



ner produce special kinds of wooden pieces. The ques-
tion here is, which are the best parameters for a cus-
tomer, who produces only special, but similar pieces
(e.g. kitchens).

3 META ALGORITHM

Figure 2 shows the two-tier, master/slave Meta-EA
structure. The primary ES deals with basic optimiza-
tion problems. The object variables (individuals) of
the secondary ES are the parameters of the primary
ES and our application parameters.
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Figure 2: Workflow of the Meta-EA: the Master sends
object variables of its individuals of a population as
parameters for an ES to the slaves, which each run one
ES for the given application and return their results as
fitness values of the best individual back to the master.

Because our primary ES has variables over alphabets
of high cardinality (ES are better than GA here) and
on the other over alphabets of low cardinality (GA
are better than ES here) we use a hybrid of mainly
an ES and some parts of a GA for the secondary
EA. An example is the recombination operator for
the object variables; the set of potential values is
R = {none,intermediate,dominant}. In order to
adapt this variable, one value z is taken randomly from
the individuals of the recombination population. The
mutation operator now determines an [0, 1] equal dis-
tributed random number Y, tests it against the given
mutation probabilty p, € [0,1] : if x > p,, then
Tneuw = T €lse Tpe, € R randomly determined.

The parameters of the primary ES to be optimized
by the secondary ES are: population sizes u, A, p, ini-
tial self-adaption size 0, modification factor of self-
adaption «, self-adaption on/off, type of self-adaption,
recombination operator, selection operator; and for the
clamp application the weighting factors of the fitness
function, number and type of clamps (different poly-
gon shapes).

Meta-EAs are very interesting because they give an-
other kind of adaption for the searched parameters. In
this case we have self adaption of the primary ES and

the adaption of the parameters by the Meta-EA.

4 IMPLEMENTATION

The toolkit EvA which contains the ES, Meta-EA and
applications is written in C/C++. The parallel part is
implemented with MPI [For95]. Master and slaves are
separate processes on different processors and commu-
nicate via MPL.

Meta-EA runs and has been used parallel on a cluster
of linux workstations, two Hewlett-Packard V2 200 (4
and 16 nodes) machines and also on a two processor
Windows NT 4.0 PC.

5 RESULTS

All parameters have been evaluated all alone, together
with others and all together. In this manner we found
the optimum for each parameter, their dependencies
among each other and also obsolete ones (no influence
on the fitness at all). In comparison to the procedure
of trial and error in order to get better parameters we
found for the most parameter better ones and got an
better insight into dependencies of parameters.

For building classes of parameter sets for given similar
input polygons (e.g. different table boards) we always
obtained the same optimal parameters. This implies
we have a rather robust fitness function, because all
of the results have been improved. In addtition there
is no need to distinguish between different input poly-
gons.

6 RELATED WORK

The self adaption of parameters is the speciality of
Evolution Stategies. But there is no research being
done about finding optimal initial strategy parameters
of an ES.

Genetic Algorithms do not have such a feature
and have problems to adapt to the solution space.
There are a few approaches in this field: Béck and
Schiitz [BS96] adapt the mutation rate of the canonical
GA, but not the main operator. Jeong and Lee [LL98]
change probabilities for crossover and mutation oper-
ators while running the GA; the higher the fitness of
an individuum the lower the probailities. Smith and
Fogarty [SF97] and Tuson and Ross [TR98] look at
the foundations of self adaption in general. Smith and
Fogarty give an overview of self adaption for GAs while
Tuson and Ross scrutinize the sense of self adaption.

On the field of Meta-EAs there is less research.



Bick [Béac96], Freisleben and Hértfelder [FH93] used
GAs for primary (Meta-EA) and secondary EAs; they
used in addition indicator functions to get the param-
eters with highest impact.

7 CONCLUSION

Our Meta-EA has been proven to find optimal parame-
ters for an Evolution Strategy for real world optimiza-
tion problems. We adapted these parameters with a
parallel hybrid Meta Evolution Strategy.

This Meta algorithm may be used in order to find bet-
ter parameters of complex, multi-objective problems
in an acceptable time period. Additionally the con-
structed fitness function may be evaluated automati-
cally.
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