
Median-Sele
tion for Parallel Steady-StateEvolution StrategiesJ�urgen Wakunda and Andreas ZellUniversity of T�ubingen, Computer S
ien
e Dept.K�ostlinstr. 6, D-72074 T�ubingenfwakunda,zellg�informatik.uni-tuebingen.deAbstra
t. We des
ribe a new sele
tion s
heme for steady-state evolu-tion strategies, median sele
tion. In steady-state algorithms, only oneindividual is generated and evaluated at ea
h step and is immediatelyintegrated into the population. This is espe
ially well suited for parallel�tness evaluation in a multipro
essor environment. Previous steady-statesele
tion s
hemes resembled (�+ �) sele
tion, whi
h has a disadvantagein self-adaptation of the mutation step length. Median sele
tion is similarto (�; �) sele
tion. Median sele
tion is 
ompared with other steady-statesele
tion s
hemes and with (�; �) sele
tion on a unipro
essor and on amultipro
essor. It a
hieves equally good or better results as the bestother sele
tion s
heme for a number of ben
hmark fun
tions.1 Introdu
tionEvolution Strategies (ES) were developed by Ingo Re
henberg and Hans-PaulS
hwefel (Re
henberg, 1973, S
hwefel, 1977) for multi-dimensional, real-valuedparameter optimization problems. The most important property of ES is theability of self-adaptation. With self-adaptation the varian
e of mutations onthe obje
t variables are adapted at runtime and thus the optimization progressis improved. Methods for self-adaptation are for example the 1/5-su

ess-rule,mutative step 
ontrol (Re
henberg, 1994), derandomized step 
ontrol (Oster-meier et al., 1993) or 
ovarian
e matrix adaptation (CMA) (Hansen and Oster-meier, 1996). The sele
tion method plays an important role for self-adaptation.In (S
hwefel, 1992) it is shown, that regarding speed of self-adaptation, 
ommasele
tion is superior to plus sele
tion (see next se
tion). The (�+1) ES was pro-posed early by (Re
henberg, 1994), but nowadays is no longer used be
ause it ismissing a s
heme for realizing self-adaptation (Rudolph, 1997).Median sele
tion,whi
h is presented in this paper, eliminates this disadvantage.This paper is organized as follows: in Se
t. 2 existing sele
tion methods arepresented and in Se
t. 3 the new median sele
tion is des
ribed; then in Se
t. 4the optimization results on a number of ben
hmark fun
tions and are presented,whi
h are dis
ussed in Se
t. 5. Finally, there are the 
on
lusions in Se
t. 6.



2 Sele
tion in Evolution Strategies2.1 Comma and Plus Sele
tionIn evolution strategies generally the 
omma or plus sele
tion is used, denotedas (�; �) and (�+ �). In plus sele
tion, the � parent individuals plus the result-ing � o�spring individuals form the sele
tion pool for the parents of the nextgeneration. This 
auses an elitist sele
tion where the best individual is always
ontained in the next generation.In the (�; �) sele
tion, only the � o�spring individuals form the sele
tion pool.Thus it is possible that the best o�spring individual is worse than the best parentindividual and hen
e a regression happens. Nevertheless, this sele
tion is bettersuited for adaptation of the step-lengths of the individuals (S
hwefel, 1992),be
ause in every generation the possibility of 
hanging the strategy parametersexists.2.2 Sele
tion in Steady-State AlgorithmsIn 
ontrast to generational evolutionary algorithms, where a whole o�springpopulation is 
reated in every generation, in steady-state ES only one or a fewindividuals are 
reated per step and immediately integrated ba
k into the parentpopulation. The term \steady-state" expresses that in one step only a small
hange takes pla
e and not the whole population 
hanges. The basi
 algorithmstep of steady-state ES is the following:1. 
reate a new individual and evaluate it with the �tness fun
tion,2. (a) sele
t an old individual whi
h may be repla
ed by the new one,(b) de
ide, if the old individual will be repla
ed.In step 2a one 
an 
hose the repla
ement strategy, e. g. repla
ement of theworst, the oldest or a randomly 
hosen individual. In step 2b one 
an 
hose the re-pla
ement 
ondition, e. g. repla
ement if the new individual is better, or un
ondi-tional repla
ement. A widely used 
ombination is to repla
e the worst individualonly if the new individual is better (B�a
k et al., 1997, Glossary, Smith, 1998, p.8). This is an elitist sele
tion and 
orresponds to the (� + 1) strategy. In oursimulations, this is denoted as \standard steady-state" sele
tion.2.3 Steady-State Algorithm with Lo
al Tournament-Sele
tionAnother steady-state algorithm 
ompared here, was inspired by (Smith and Fog-arty, 1996). The idea is to generate only a small number � of o�spring individualsand sele
t one of them (e.g. the best) to integrate it into the main parent popu-lation. This is a kind of lo
al tournament sele
tion: (1; �). It has a high sele
tionpressure and is distin
tive like the normal 
omma sele
tion. Parallelization ofthis algorithm is easy: instead of immediately integrating an evaluated o�springindividual, � o�spring individuals are 
olle
ted in a bu�er and only the bestof them is then integrated in the parent population. In the experiments thisalgorithm is denoted as \steady-state with lo
al tournament sele
tion".



3 Median Sele
tionThe motivation for the design of the median sele
tion was to get a sele
tions
heme with the following properties:{ it should evaluate and integrate only one individual per step,{ it should be a non-elitist sele
tion, whi
h fa
ilitates self-adaptation; a tem-porary worsening of the average �tness should be allowed, like in the (�; �)sele
tion.The idea behind the median sele
-
m m

l-m m

generation t generation
t+1

density

fitness

f
lim

l

Fig. 1. (�; �) sele
tion

tion is, that the de
ision, whether anindividual is integrated into the po-pulation or not, is made by a de
isionfun
tion without the 
ontext of otherindividuals. This makes it easy to re-alize a steady-state sele
tion. The fun
-tion uses data about the �tness dis-tribution of formerly generated indi-viduals whi
h have already passed thesele
tion pro
ess. Using this data, thebehavior of a (�; �) sele
tion is mod-eled by determining the �tness limit,whi
h separates the � best individu-als from the ��� remaining individu-als. No further repla
ement 
onditionis needed.The model of Fig. 1 was assumedfor the (�; �) sele
tion. Out of � par-ent individuals � o�spring individuals are generated. Thereof the � best aresele
ted as parents for the next generation. To do this, it is useful to sort theo�spring individuals a

ording to their �tness. If flim is the a

eptan
e limit�tness value, a new o�spring individual i is integrated if fi >= flim. flim is isthe �-smallest value (for minimization) or the �-median of the �tness values ofthe o�spring. Hen
e the name.A model is used for the distribution of the �tness values and flim is deter-mined from it. With every newly 
reated and evaluated individual the modelis updated. Be
ause the average �tness of the population should be improvingpermanently, it is desired that relatively old �tness values are removed from themodel. Instead of modeling a parti
ular distribution, the distribution is repre-sented by a sample of the last np �tness values of the 
reated o�spring indivi-duals. For this a FIFO �tness bu�er whose elements additionally are linked insorting order, is used (Fig. 2). This is not a priority queue, as elements leave theFIFO after np steps, regardless of their �tness. This bu�er 
an be a

essed intwo ways:1. in FIFO organization, for insertion of a new �tness value. It remains np stepsin the bu�er and then drops out.



2. in sorted order a

ording to the �tness value, for determining the �-median.The operation of inserting
t

f

f

f

f

f

f

f

f

f

f

f

f

t

t-1

1n -2p

n -1p

n -1pnp

3

3 2

2

t-2

t-2

t-np+1

t-n +1p

in

out

FIFO-view

FIFO-index

FIFO-index

sorted index

sorted view

}}

n (l-m)/lp
n m/lpFig. 2. The bu�er with the �tness values of thelast np 
reated o�spring individuals. Above theFIFO view is shown, below the a

ess a

ordingto sorted �tness values.

an element into the FIFO buf-fer is denoted in the algorithmbelow by fifo insert(). A
-
ess to the k-smallest elementis realized by the fun
tion fi-fo getSorted(k). For deter-mining the �-median, whi
hrepresents the a

eptan
e limitflim, the �tness value at in-dex np � �� has to be a

essedin the sorted bu�er.Additional parameters forthe median sele
tion are thelength of the FIFO-bu�er npand the relative rate of a

ep-tan
e rp=̂�� whi
h determinesthe a

eptan
e limit in thisway: flim = �fo getSorted (rp�np). The bu�er length np 
or-responds to the number of o�-spring individuals of a 
orresponding (�; �) ES. But now we have the advantageto 
hose np lower than we would 
hose �, be
ause this does not primarily a�e
tthe sele
tion pressure like � and it speeds up the adaptation of the �tness a

ep-tan
e limit. (Smith and Fogarty, 1996) use a ratio of �� = 15 = 0:2. (B�a
k, 1992a)uses a ratio of �� � 16 � 0:16667. In evolution strategies the ratio �� = 15100 = 0:15is often used (Ostermeier et al., 1993).The algorithm for the steady-state ES with median sele
tion is:t = 0;initialize(P�(0)); evaluate(P�(0));fifo init();while (not termination) doI = re
ombine(P�(t));I 0 = mutate(I);evaluate(I 0);flim = fifo getSorted(rp � np);if (f(I 0) better than flim) thensele
t Individual to repla
e (Irepl)repla
e Irepl by I 0;endiffifo insert(f(I 0));t = t + 1;endwhile



The sele
tion of the individual to repla
e Irepl 
an be performed by one of therepla
ement methods mentioned in Se
t. 2.2: repla
ement of the worst, oldest ora randomly 
hosen individual.4 EvaluationThe following fun
tions numbered a

ording to (B�a
k, 1992b) were used as testfun
tions (formulas are not presented here due to spa
e limitations):{ f2 Generalized Rosenbro
k's Fun
tion (unimodal, 
orrelated variables),{ f6 S
hwefel's Fun
tion 1.2 (unimodal),{ f9 A
kley's Fun
tion (multimodal){ f15 Weighted Sphere (unimodal, di�erent weights for ea
h variable),{ f24 Kowalik (multimodal).All simulations were done with EvA (Evolutionary Algorithms) (Wakundaand Zell, 1997), our own system whi
h 
ontains a large number of variants ofgeneti
 algorithms and evolution strategies.In the simulations a population size of � = 20 was used 
onsistently to ensure
omparability. This is espe
ially ne
essary for the multimodal fun
tions f9 andf24 in order not to 
onverge into a lo
al optimum.The simulations on one pro
essor were performed on PCs, the multipro
essorsimulations were performed on a Hewlett Pa
kard V2200, a 16 pro
essor sharedmemory ma
hine, using the MPI library. The parallel version of the program runson 2 or more pro
essors and 
onsists of one master pro
essor for the 
ore ESalgorithm and one or more worker pro
essors for (asyn
hronous) �tness fun
tionevaluations. So, the lowest useful number of pro
essors in the parallel version is3. For all simulations 
ovarian
e matrix adaptation (CMA) was used for adap-tation of the strategy parameters, be
ause it is 
urrently the most powerful adap-tation method (Hansen and Ostermeier, 1996). The 
ompared strategies are:1. (20; �) Evolution Strategy (
omma) (only sequential simulations),2. (20 + 1) steady-state ES with repla
e worst, if better ; the \standard steady-state"-algorithm,3. (20 + (1; �)) steady-state ES with lo
al tournament sele
tion, repla
ementstrategy repla
e oldest and repla
ement 
ondition always (sele
tion takesalready pla
e in lo
al tournament),4. (20+1) steady-state ES with median sele
tion, also with repla
ement strat-egy repla
e oldest and repla
ement 
ondition always.In simulations prior to the tests listed here, it was shown that the repla
ementstrategy repla
e oldest is advantageous in evolution strategies: it 
auses a non-elitist sele
tion (in 
ontrast to repla
e worst), whi
h is also the 
ase in (�; �)sele
tion.For the di�erent parameters to set for these strategies, no stati
 standardvalues were used, but for every fun
tion the optimal values were determinedseparately by an extra experiment. These are the following parameters:



{ (20; �) ES: optimal �,{ (20+ (1; �)) ES with lo
al tournament sele
tion: optimal tournament size �,{ (20 + 1) ES with median sele
tion: optimal bu�er size np, the a

eptan
elimit rp = 0:15 turned out to be good for all simulations.These values were determined only for the sequential version and were then usedalso for the parallel version. The a
tual values are given with ea
h fun
tion. Forthe (�; �) ES only sequential results are shown, be
ause it is not very well suitedfor this kind of parallelization and the other algorithms were more promising.In all experiments with the sequential algorithm 30 runs were evaluated forea
h strategy with di�erent values for the random number generator. With theparallel algorithm, 20 runs were evaluated for ea
h strategy and every number ofpro
essors. Fun
tion f24 demanded lower 
omputation resour
es and had lower
onvergen
e rates, so 100 runs were made with all numbers of pro
essors.4.1 Generalized Rosenbro
k's Fun
tion f2Fun
tion f2 was 
al
ulated with dimension n = 20, termination 
riterion wasrea
hing a �tness value less than � = 10�20 with a maximum of tmax = 270:000fun
tion evaluations. For the 
omma-ES � = 80 was 
hosen, for the steady-stateES with lo
al tournament sele
tion � = 5 was 
hosen and the bu�er size ofthe median-ES was np = 40 (the a

eptan
e limit is rp = 0:15 for all testedfun
tions).The results are shown in Fig. 3(a). Standard Steady-State and Median se-le
tion need nearly the same number of fun
tion evaluations, at 9 pro
essorsMedian needs about 8% more, this is the maximum di�eren
e. The di�eren
eto lo
al tournament sele
tion is signi�
antly greater: about 10% to 35% in re-lation to standard steady-state. For lo
al tournament with 7 and 15 pro
essorsnone of the 20 runs did 
onverge to 10�20. In general the 
onvergen
e ratio wassigni�
antly worse than for the other algorithms.The 
omma strategy needs nearly twi
e as mu
h fun
tion evaluations as thesteady-state algorithms on one pro
essor. This is similar for the other fun
tionsand will be dis
ussed in more detail in Se
t. 5.4.2 S
hwefel's Fun
tion 1.2 f6Fun
tion f6 was 
al
ulated with dimension n = 20, � = 10�20, tmax = 100:000.The free parameters optimized were � = 70 (
omma-ES); � = 5 (lo
al tourna-ment); np = 70 (median).The results are shown in Fig. 3(b). Here Median sele
tion needs only between80% and 87% of the fun
tion evaluations of the standard steady-state algorithm.This means that Median sele
tion is able to adapt the step sizes better. Lo
altournament sele
tion is here for one pro
essor as good as standard steady-state,but for other number of pro
essors, it needs 
learly more fun
tion evaluations.The 
onvergen
e rates for lo
al tournament are quite surprising. With one orthree pro
essors, all 20 runs 
onverged. This is the same for the other methods,



80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(a) fun
tion f2
40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(b) fun
tion f6
20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(
) fun
tion f9
20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(d) fun
tion f15Fig. 3. Line graphs: 
omparison of numbers of fun
tion evaluations until the termina-tion 
riterion is rea
hed. Bar graphs: 
omparison of the number of not 
onverged runs.Details see text.



-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

20

40

60

80

100

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

Fig. 4. Comparison for fun
tion f24.where this was the 
ase for all number of pro
essors. But with 5 pro
essors andlo
al tournament sele
tion, none of the 20 runs 
onverged within the 100.000evaluations.4.3 A
kley's Fun
tion f9Fun
tion f9 was 
al
ulated with dimension n = 20, � = 10�10 (due to limited
omputing pre
ision), tmax = 150:000. The free parameters were optimized to:� = 60 (
omma-ES); � = 5 (lo
al tournament); np = 40 (median).The results are shown in Fig. 3(
). The results are similar to fun
tion f6:Median sele
tion 
onstantly needs less evaluations than standard steady-state.Lo
al tournament is here a little better for one pro
essor, but this is not the
ase for more than one pro
essors, where it needs 
learly more evaluations thanthe other two parallel methods. The 
onvergen
e rate for Median were always alittle worse than for standard steady-state. Lo
al tournament sele
tion failed toadapt in many runs.4.4 Weighted Sphere Model f15Fun
tion f15 was 
al
ulated with dimension n = 20, � = 10�20, tmax = 160:000.The free parameters were optimized to: � = 65 (
omma-ES); � = 4 (lo
al tour-nament); np = 40 (median).The results are shown in Fig. 3(d). Standard steady-state and the Medianmethod show almost equal behavior, the 
onvergen
e rates are 100% for bothmethods. The lo
al tournament method needs up to two times more fun
tionevaluations than the other two, 
onvergen
e rates are between 0% and 100%.4.5 Kowalik f24The dimension of fun
tion f24 is �xed at n = 4. The optimum of f24 is given inliterature (B�a
k, 1992b) with min(f24) � f24(0:1928; 0:1908; 0:1231; 0:1358) �3:07485988 � 10�4. Termination 
riterion was rea
hing a �tness value less than



3:07486 � 10�4 with a maximum of 200.000 fun
tion evaluations. The followingfree parameters were 
hosen: � = 100 (
omma-ES); � = 6 (lo
al tournament);np = 40 (median).Be
ause all 
ompared strategies rea
hed the global optimum at maximumonly in half of the runs and this fun
tion needed 
learly less evaluations thanthe others, we used 100 runs per strategy to obtain more signi�
ant results.The results are shown in Fig. 4(a). The best results are a
hieved by the stan-dard steady-state algorithm, whi
h needs about 10.000 fun
tion evaluations forall numbers of pro
essors. For some numbers of pro
essors, Median sele
tiona
hieves roughly the same results, but for others, it needs up to 1.5 times moreevaluations. Lo
al tournament 
onstantly needs more evaluations than the othertwo steady-state methods, the 
onvergen
e rate is worse for some number ofpro
essors.5 Dis
ussion of the ResultsThe 
omparisons were all performed with the same number of parent individuals� = 20. Thereby the (20; �)-ES needs more fun
tion evaluations than the steady-state algorithms. The reason for this probably lies in the interdependen
e of thepopulation size and the sele
tion pressure of the 
omma strategy, whi
h is givenby �=�. For a �xed � and �xed sele
tion pressure, a large � has to be 
hosen. Butabove a 
ertain value, an in
rease of � has no signi�
ant e�e
t towards progress.In this 
ase, it is more eÆ
ient to take several smaller steps with a redu
ed sizeo�spring population.The strategy with lo
al tournament sele
tion seems to be not so suitable forevolution strategies. It fails to adapt step sizes 
orre
tly in many 
ases and needsmore fun
tion evaluations than the standard steady-state methods or even is notable to make signi�
ant progress at all and the optimization stagnates.The new method Median sele
tion shows a better performan
e than the othertested methods for the fun
tions f6 and f9. For the other three test fun
tions,Median sele
tion shows similar performan
e as the standard steady-state methodor is only slightly worse for some numbers of pro
essors. The high 
omputingresour
es needed for the parallel measurements together prevented a still highernumber of runs per data point.Median sele
tion introdu
es the two new parameters np and rp, but makesthe parameter � obsolete. It seems to be very robust for a �xed setting of theseparameters for all numbers of pro
essors.Regarding the number of fun
tion evaluations needed with in
reasing num-ber of pro
essors, there is only a relatively small in
rease. This is due to theoverlapping of the asyn
hronous handled �tness evaluations. This promises anear linear speedup and is very good to redu
e the 
omputation time for realappli
ations, whi
h need a high amount of 
omputing power.



6 Con
lusionsThe new sele
tion method median sele
tion for steady-state evolution strategieswas presented and 
ompared for a number of test fun
tions with other steady-state sele
tion methods and the generational (�; �) ES. It indi
ated that mediansele
tion enables self-adaptation as well as or even better than all other sele
-tion methods. The algorithm is very well suited for asyn
hronous, parallel �tnessevaluation, whi
h is the preferred parallelization method for optimization prob-lems with the need for high 
omputing resour
es. Furthermore it turned out thatthe use of a steady-state evolution strategy is valuable even on a single pro
essor
omputer without parallel evaluation of the individuals. This is true espe
iallyfor multimodal fun
tions.Referen
esB�a
k, T. (1992a). The intera
tion of mutation rate, sele
tion and self-adaptation withina geneti
 algorithm. In M�anner, R. and Manderi
k, B., editors, Parallel ProblemSolving from Nature { PPSN II, volume 2, pages 85{94, Amsterdam, Netherlands.Elsevier S
ien
e Publishers.B�a
k, T. (1992b). A user's guide to genesys 1.0. Te
hni
al report, University ofDortmund, Department of Computer S
ien
e, System Analysis Resear
h Group.B�a
k, T., Fogel, D. B., and Mi
halewi
z, Z., editors (1997). Handbook of EvolutionaryComputation. IOP Publishing and Oxford University Press, New York, Bristol.Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distri-butions in evolution strategies: The 
ovarian
e matrix adaptation. In Pro
eedingsof the 1996 IEEE International Conferen
e on Evolutionary Computation (ICEC'96), pages 312{317, Nagoya, Japan. IEEE.Ostermeier, A., Gawel
zyk, A., and Hansen, N. (1993). A derandomized approa
h toself adaptation of evolution strategies. Te
hni
al report, Te
hnis
he Universit�atBerlin.Re
henberg, I. (1973). Optimierung te
hnis
her Systeme na
h Prinzipien der biologis-
hen Evolution. PhD thesis, TU Berlin, F. f. Mas
hinenwesen. Published also in:S
hriften zur Informatik 1971.Re
henberg, I. (1994). Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evo-lutionste
hnik. frommann{holzboog, Stuttgart.Rudolph, G. (1997). Evolution strategies. In B�a
k et al., 1997, pages B1.3:1{B1.3:6.S
hwefel, H.-P. (1977). Numeris
he Optimierung von Computer-Modellen mittels derEvolutionsstrategie, volume 26 of Interdis
iplinary systems resear
h. Birkh�auser,Basel.S
hwefel, H.-P. (1992). Natural evolution and 
olle
tive optimum seeking. In Sydow,A., editor, Computational Systems Analysis | Topi
s and Trends, pages 5{14.Elsevier, Amsterdam.Smith, J. E. (1998). Self Adaptation in Evolutionary Algorithms. PhD thesis, Fa
ultyof Computer Studies and Mathemati
s, University of the West of England, Bristol.Smith, J. E. and Fogarty, T. C. (1996). Self adaptation of mutation rates in a steadystate geneti
 algorithm. In Pro
eedings of the 1996 IEEE Conferen
e on Evolution-ary Computation, pages 318{323, New York. IEEE Press.Wakunda, J. and Zell, A. (1997). EvA - a tool for optimization with evolutionary algo-rithms. In Pro
eedings of the 23rd EUROMICRO Conferen
e, Budapest, Hungary.


