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Abstract. We describe a new selection scheme for steady-state evolu-
tion strategies, median selection. In steady-state algorithms, only one
individual is generated and evaluated at each step and is immediately
integrated into the population. This is especially well suited for parallel
fitness evaluation in a multiprocessor environment. Previous steady-state
selection schemes resembled (u + \) selection, which has a disadvantage
in self-adaptation of the mutation step length. Median selection is similar
to (u, A) selection. Median selection is compared with other steady-state
selection schemes and with (u,A) selection on a uniprocessor and on a
multiprocessor. It achieves equally good or better results as the best
other selection scheme for a number of benchmark functions.

1 Introduction

Evolution Strategies (ES) were developed by Ingo Rechenberg and Hans-Paul
Schwefel (Rechenberg, 1973, Schwefel, 1977) for multi-dimensional, real-valued
parameter optimization problems. The most important property of ES is the
ability of self-adaptation. With self-adaptation the variance of mutations on
the object variables are adapted at runtime and thus the optimization progress
is improved. Methods for self-adaptation are for example the 1/5-success-rule,
mutative step control (Rechenberg, 1994), derandomized step control (Oster-
meier et al., 1993) or covariance matrix adaptation (CMA) (Hansen and Oster-
meier, 1996). The selection method plays an important role for self-adaptation.
In (Schwefel, 1992) it is shown, that regarding speed of self-adaptation, comma
selection is superior to plus selection (see next section). The (u+ 1) ES was pro-
posed early by (Rechenberg, 1994), but nowadays is no longer used because it is
missing a scheme for realizing self-adaptation (Rudolph, 1997). Median selection,
which is presented in this paper, eliminates this disadvantage.

This paper is organized as follows: in Sect. 2 existing selection methods are
presented and in Sect. 3 the new median selection is described; then in Sect. 4
the optimization results on a number of benchmark functions and are presented,
which are discussed in Sect. 5. Finally, there are the conclusions in Sect. 6.



2 Selection in Evolution Strategies

2.1 Comma and Plus Selection

In evolution strategies generally the comma or plus selection is used, denoted
as (1, A) and (pu+ A). In plus selection, the u parent individuals plus the result-
ing A offspring individuals form the selection pool for the parents of the next
generation. This causes an elitist selection where the best individual is always
contained in the next generation.

In the (u, A) selection, only the A offspring individuals form the selection pool.
Thus it is possible that the best offspring individual is worse than the best parent
individual and hence a regression happens. Nevertheless, this selection is better
suited for adaptation of the step-lengths of the individuals (Schwefel, 1992),
because in every generation the possibility of changing the strategy parameters
exists.

2.2 Selection in Steady-State Algorithms

In contrast to generational evolutionary algorithms, where a whole offspring
population is created in every generation, in steady-state ES only one or a few
individuals are created per step and immediately integrated back into the parent
population. The term “steady-state” expresses that in one step only a small
change takes place and not the whole population changes. The basic algorithm
step of steady-state ES is the following;:

1. create a new individual and evaluate it with the fitness function,
2. (a) select an old individual which may be replaced by the new one,
(b) decide, if the old individual will be replaced.

In step 2a one can chose the replacement strategy, e. g. replacement of the
worst, the oldest or a randomly chosen individual. In step 2b one can chose the re-
placement condition, e. g. replacement, if the new individual is better, or uncondi-
tional replacement. A widely used combination is to replace the worst individual
only if the new individual is better (Béck et al., 1997, Glossary, Smith, 1998, p.
8). This is an elitist selection and corresponds to the (u + 1) strategy. In our
simulations, this is denoted as “standard steady-state” selection.

2.3 Steady-State Algorithm with Local Tournament-Selection

Another steady-state algorithm compared here, was inspired by (Smith and Fog-
arty, 1996). The idea is to generate only a small number A of offspring individuals
and select one of them (e.g. the best) to integrate it into the main parent popu-
lation. This is a kind of local tournament selection: (1, A). It has a high selection
pressure and is distinctive like the normal comma selection. Parallelization of
this algorithm is easy: instead of immediately integrating an evaluated offspring
individual, A offspring individuals are collected in a buffer and only the best
of them is then integrated in the parent population. In the experiments this
algorithm is denoted as “steady-state with local tournament selection”.



3 Median Selection

The motivation for the design of the median selection was to get a selection
scheme with the following properties:

— it should evaluate and integrate only one individual per step,

— it should be a non-elitist selection, which facilitates self-adaptation; a tem-
porary worsening of the average fitness should be allowed, like in the (u, A)
selection.
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The model of Fig. 1 was assumed Fig. 1. (u, \) selection

for the (u, A) selection. Out of y par-

ent individuals A offspring individuals are generated. Thereof the p best are
selected as parents for the next generation. To do this, it is useful to sort the
offspring individuals according to their fitness. If f;;, is the acceptance limit
fitness value, a new offspring individual i is integrated if f; >= fiim. fiim 1S iS
the p-smallest value (for minimization) or the py-median of the fitness values of
the offspring. Hence the name.

A model is used for the distribution of the fitness values and f;;, is deter-
mined from it. With every newly created and evaluated individual the model
is updated. Because the average fitness of the population should be improving
permanently, it is desired that relatively old fitness values are removed from the
model. Instead of modeling a particular distribution, the distribution is repre-
sented by a sample of the last n, fitness values of the created offspring indivi-
duals. For this a FIFO fitness buffer whose elements additionally are linked in
sorting order, is used (Fig. 2). This is not a priority queue, as elements leave the
FIFO after n, steps, regardless of their fitness. This buffer can be accessed in
two ways:

1. in FIFO organization, for insertion of a new fitness value. It remains n, steps
in the buffer and then drops out.



2. in sorted order according to the fitness value, for determining the u-median.
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spring individuals of a corresponding (u, A) ES. But now we have the advantage

to chose n, lower than we would chose A, because this does not primarily affect
the selection pressure like A and it speeds up the adaptation of the fitness accep-

tance limit. (Smith and Fogarty, 1996) use a ratio of & = 1 = 0.2. (Bick, 1992a)
uses a ratio of £ ~ % ~ 0.16667. In evolution strategies the ratio & = % =0.15

is often used (Ostermeier et al., 1993).
The algorithm for the steady-state ES with median selection is:

t-2 FIFO-index t—np-%—] t

t =0;
initialize(P,(0)); evaluate(P,(0));
fifo_init();
while (not termination) do
I = recombine(P,(t));
I' = mutate(]);
evaluate(I');
frim = fifo_getSorted(r, - n,);
if (f(I') better than fj;,,) then
select Individual to replace (Iy¢p)
replace I, by I';
endif
fifo_insert (£ (I"));
t =t + 1;
endwhile



The selection of the individual to replace I,y can be performed by one of the
replacement methods mentioned in Sect. 2.2: replacement of the worst, oldest or
a randomly chosen individual.

4 Evaluation

The following functions numbered according to (Béck, 1992b) were used as test
functions (formulas are not presented here due to space limitations):

— fa Generalized Rosenbrock’s Function (unimodal, correlated variables),
— f6 Schwefel’s Function 1.2 (unimodal),

— f9 Ackley’s Function (multimodal)

— fi15 Weighted Sphere (unimodal, different weights for each variable),

— f24 Kowalik (multimodal).

All simulations were done with EvA (FEwvolutionary Algorithms) (Wakunda
and Zell, 1997), our own system which contains a large number of variants of
genetic algorithms and evolution strategies.

In the simulations a population size of u = 20 was used consistently to ensure
comparability. This is especially necessary for the multimodal functions f9 and
f24 in order not to converge into a local optimum.

The simulations on one processor were performed on PCs, the multiprocessor
simulations were performed on a Hewlett Packard V2200, a 16 processor shared
memory machine, using the MPI library. The parallel version of the program runs
on 2 or more processors and consists of one master processor for the core ES
algorithm and one or more worker processors for (asynchronous) fitness function
evaluations. So, the lowest useful number of processors in the parallel version is
3.

For all simulations covariance matrix adaptation (CMA) was used for adap-
tation of the strategy parameters, because it is currently the most powerful adap-
tation method (Hansen and Ostermeier, 1996). The compared strategies are:

1. (20, ) Evolution Strategy (comma) (only sequential simulations),

2. (20 + 1) steady-state ES with replace worst, if better; the “standard steady-
state”-algorithm,

3. (20 + (1, A)) steady-state ES with local tournament selection, replacement
strategy replace oldest and replacement condition always (selection takes
already place in local tournament),

4. (204 1) steady-state ES with median selection, also with replacement strat-
egy replace oldest and replacement condition always.

In simulations prior to the tests listed here, it was shown that the replacement
strategy replace oldest is advantageous in evolution strategies: it causes a non-
elitist selection (in contrast to replace worst), which is also the case in (u, A)
selection.

For the different parameters to set for these strategies, no static standard
values were used, but for every function the optimal values were determined
separately by an extra experiment. These are the following parameters:



— (20, ) ES: optimal A,

— (204 (1, X)) ES with local tournament selection: optimal tournament size A,

— (20 + 1) ES with median selection: optimal buffer size n,, the acceptance
limit r, = 0.15 turned out to be good for all simulations.

These values were determined only for the sequential version and were then used
also for the parallel version. The actual values are given with each function. For
the (1, A) ES only sequential results are shown, because it is not very well suited
for this kind of parallelization and the other algorithms were more promising.
In all experiments with the sequential algorithm 30 runs were evaluated for
each strategy with different values for the random number generator. With the
parallel algorithm, 20 runs were evaluated for each strategy and every number of
processors. Function fo4 demanded lower computation resources and had lower
convergence rates, so 100 runs were made with all numbers of processors.

4.1 Generalized Rosenbrock’s Function fs

Function fs was calculated with dimension n = 20, termination criterion was
reaching a fitness value less than A = 10720 with a maximum of ¢,,,, = 270.000
function evaluations. For the comma-ES A = 80 was chosen, for the steady-state
ES with local tournament selection A = 5 was chosen and the buffer size of
the median-ES was n, = 40 (the acceptance limit is r, = 0.15 for all tested
functions).

The results are shown in Fig. 3(a). Standard Steady-State and Median se-
lection need nearly the same number of function evaluations, at 9 processors
Median needs about 8% more, this is the maximum difference. The difference
to local tournament selection is significantly greater: about 10% to 35% in re-
lation to standard steady-state. For local tournament with 7 and 15 processors
none of the 20 runs did converge to 1072°. In general the convergence ratio was
significantly worse than for the other algorithms.

The comma strategy needs nearly twice as much function evaluations as the
steady-state algorithms on one processor. This is similar for the other functions
and will be discussed in more detail in Sect. 5.

4.2 Schwefel’s Function 1.2 fg

Function fg was calculated with dimension n = 20, A = 1072°, ¢,,,, = 100.000.
The free parameters optimized were A = 70 (comma-ES); A = 5 (local tourna-
ment); n, = 70 (median).

The results are shown in Fig. 3(b). Here Median selection needs only between
80% and 87% of the function evaluations of the standard steady-state algorithm.
This means that Median selection is able to adapt the step sizes better. Local
tournament selection is here for one processor as good as standard steady-state,
but for other number of processors, it needs clearly more function evaluations.
The convergence rates for local tournament are quite surprising. With one or
three processors, all 20 runs converged. This is the same for the other methods,
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Fig. 3. Line graphs: comparison of numbers of function evaluations until the termina-
tion criterion is reached. Bar graphs: comparison of the number of not converged runs.
Details see text.
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where this was the case for all number of processors. But with 5 processors and
local tournament selection, none of the 20 runs converged within the 100.000
evaluations.

4.3 Ackley’s Function fo

Function fy was calculated with dimension n = 20, A = 10710 (due to limited
computing precision), tma: = 150.000. The free parameters were optimized to:
A =60 (comma-ES); A =5 (local tournament); n,, = 40 (median).

The results are shown in Fig. 3(c). The results are similar to function fg:
Median selection constantly needs less evaluations than standard steady-state.
Local tournament is here a little better for one processor, but this is not the
case for more than one processors, where it needs clearly more evaluations than
the other two parallel methods. The convergence rate for Median were always a
little worse than for standard steady-state. Local tournament selection failed to
adapt in many runs.

4.4 Weighted Sphere Model fi5

Function fi5 was calculated with dimension n = 20, A = 1072°, ¢,,,4. = 160.000.
The free parameters were optimized to: A = 65 (comma-ES); A = 4 (local tour-
nament); n, = 40 (median).

The results are shown in Fig. 3(d). Standard steady-state and the Median
method show almost equal behavior, the convergence rates are 100% for both
methods. The local tournament method needs up to two times more function
evaluations than the other two, convergence rates are between 0% and 100%.

4.5 Kowalik fa4

The dimension of function fa4 is fixed at n = 4. The optimum of fo4 is given in
literature (Béack, 1992b) with min(fz4) =~ f24(0.1928,0.1908,0.1231,0.1358) =
3.07485988 - 10~*. Termination criterion was reaching a fitness value less than



3.07486 - 10~* with a maximum of 200.000 function evaluations. The following
free parameters were chosen: A\ = 100 (comma-ES); A = 6 (local tournament);
np = 40 (median).

Because all compared strategies reached the global optimum at maximum
only in half of the runs and this function needed clearly less evaluations than
the others, we used 100 runs per strategy to obtain more significant results.
The results are shown in Fig. 4(a). The best results are achieved by the stan-
dard steady-state algorithm, which needs about 10.000 function evaluations for
all numbers of processors. For some numbers of processors, Median selection
achieves roughly the same results, but for others, it needs up to 1.5 times more
evaluations. Local tournament constantly needs more evaluations than the other
two steady-state methods, the convergence rate is worse for some number of
processors.

5 Discussion of the Results

The comparisons were all performed with the same number of parent individuals
u = 20. Thereby the (20, A)-ES needs more function evaluations than the steady-
state algorithms. The reason for this probably lies in the interdependence of the
population size and the selection pressure of the comma strategy, which is given
by u/A. For a fixed p and fixed selection pressure, a large A has to be chosen. But
above a certain value, an increase of A has no significant effect towards progress.
In this case, it is more efficient to take several smaller steps with a reduced size
offspring population.

The strategy with local tournament selection seems to be not so suitable for
evolution strategies. It fails to adapt step sizes correctly in many cases and needs
more function evaluations than the standard steady-state methods or even is not
able to make significant progress at all and the optimization stagnates.

The new method Median selection shows a better performance than the other
tested methods for the functions fg and fo. For the other three test functions,
Median selection shows similar performance as the standard steady-state method
or is only slightly worse for some numbers of processors. The high computing
resources needed for the parallel measurements together prevented a still higher
number of runs per data point.

Median selection introduces the two new parameters n, and r,, but makes
the parameter A obsolete. It seems to be very robust for a fixed setting of these
parameters for all numbers of processors.

Regarding the number of function evaluations needed with increasing num-
ber of processors, there is only a relatively small increase. This is due to the
overlapping of the asynchronous handled fitness evaluations. This promises a
near linear speedup and is very good to reduce the computation time for real
applications, which need a high amount of computing power.



6 Conclusions

The new selection method median selection for steady-state evolution strategies
was presented and compared for a number of test functions with other steady-
state selection methods and the generational (u, A) ES. It indicated that median
selection enables self-adaptation as well as or even better than all other selec-
tion methods. The algorithm is very well suited for asynchronous, parallel fitness
evaluation, which is the preferred parallelization method for optimization prob-
lems with the need for high computing resources. Furthermore it turned out that
the use of a steady-state evolution strategy is valuable even on a single processor
computer without parallel evaluation of the individuals. This is true especially
for multimodal functions.
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